威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

威尼斯赌博游戏_威尼斯赌博app-【官网】

图片
Pressemitteilung 91/24 - 06.08.2024

Studie untersucht ?Schlagl?cher“ an der Grenze zum All

Universit?t Augsburg ist Partner in internationalem Gemeinschaftsprojekt

Etwa 80 bis 120 Kilometer über der Erdoberfl?che wird die Luft so dünn, dass dieser H?henbereich oft als Grenze zum Weltraum bezeichnet wird. Dennoch hat diese Atmosph?renschicht eine enorme Bedeutung - einerseits für den Flug von Satelliten und andererseits für das Erdklima. Die Universit?ten Augsburg und Bern sowie das Deutsche Zentrum für Luft- und Raumfahrt (DLR) wollen diesen Grenzbereich nun genauer untersuchen. Die DFG und die SNSF f?rdern das auf den Namen GIGAWATT getaufte Projekt mit insgesamt 1,2 Millionen Euro.

Im Airglow-Bild sind die durch die Schwerewellen verursachten ?Rippeln“ gut zu erkennen. ? Universit?t Augsburg/DLR

Das GIGAWATT-Projekt nimmt eine bestimmte Sorte von Str?mungen genauer unter die Lupe, die sogenannten atmosph?rischen Schwerewellen. Diese entstehen h?ufig in den unteren Luftschichten und pflanzen sich von dort bis in über 100 Kilometer H?he fort - ?hnlich wie Meereswellen, nur dass sie nicht nur horizontal, sondern vor allem auch vertikal verlaufen. Im Grenzbereich zwischen Atmosph?re und All brechen die Schwerewellen und verursachen dabei chaotische Verwirbelungen.

Dieser Vorgang ist es, der die Forschenden vor allem interessiert. Denn das Schicksal der Schwerewellen hat Auswirkungen auf unser Klima. ?Die Wellen stellen gewisserma?en die Weichen für die gro?en erdumspannenden Str?mungssysteme“, erkl?rt Michael Bittner, Professor für Atmosph?renfernerkundung an der Universit?t Augsburg. ?Darunter sind beispielsweise die hochliegenden Windsysteme, die den Luftaustausch zwischen den Polen der Erde? steuern. In Klimamodellen wird die Wirkung von Schwerewellen bislang aber nur sehr ungenau abgebildet.“

Ein Grund: Zwar ist die Ausbreitung und Brechung der Wellen physikalisch gut verstanden. Die Gleichungssysteme, die diese Prozesse beschreiben, sind aber so komplex, dass sie sich auch mit den schnellsten Supercomputern nicht l?sen lassen. Forschende behelfen sich daher mit N?herungen, sogenannten Parametrisierungen, um den Werdegang der Wellen zu modellieren. ?Damit diese Modelle ein realistisches Ergebnis liefern, muss man sie aber mit m?glichst exakten Ausgangsdaten füttern“, erl?utert Bittners Mitarbeiter Dr. Patrick Hannawald.

Radarsysteme und optische Kameras in den Alpen

Soll hei?en: Man muss wissen, wo sich die Wellen aktuell befinden und wie sie sich verhalten, um ihren Verlauf in die Zukunft extrapolieren zu k?nnen. Und je genauer man das wei?, desto besser wird das Ergebnis. Doch bislang ist es nur sehr schwer m?glich, die Wellen in der Grenzschicht zwischen Atmosph?re und All aufzuspüren. Genau hier setzt das neue Projekt an: Die beteiligten Arbeitsgruppen m?chten die Schwerewellen mit verschiedenen Methoden exakter sichtbar machen. ?Dazu werden wir zusammen mit unseren Projektpartnern in den deutschen und schweizer Alpen Radarsysteme installieren und zugleich optische Kameras aufbauen“, sagt Hannawald. ?Damit lassen sich dann sogenannte tomografische Messungen durchführen.“

Mit diesem Ansatz lassen sich die Wellenfronten in ihrer dreidimensionalen Ausdehnung sichtbar machen. Die Beteiligten nutzen dazu ein Ph?nomen, das als Airglow bekannt ist: Die Moleküle in der oberen Atmosph?re werden durch die energiereiche Strahlung der Sonne angeregt, so dass sie permanent schwach leuchten. Vom Weltall aus ist dieses Glühen mit blo?em Auge zu sehen. Mit den Kameras soll das auch vom Boden m?glich werden. Bereiche mit einem h?heren Luftdruck - die Wellenberge, wenn man so will - leuchten dabei besonders stark. ?Aus den Intensit?tsmustern l?sst sich daher auf den Verlauf der Wellen schlie?en“, erkl?rt der Augsburger Wissenschaftler.

So werden in den Aufnahmen oft charakteristische Strukturen sichtbar, ?hnlich wie Rippeln in einem Sandstrand bei Ebbe. Wenn die Wellen brechen, hinterlassen sie zudem in den Fotos eine Art ?Gischtspur“. Diese Ergebnisse sind nicht nur für die Klimaforschung relevant, sondern auch für einen ganz anderen Bereich. ?Momentan nimmt die Zahl der Satelliten im erdnahen Orbit rasant zu“, sagt Prof. Bittner. ?Dort etabliert sich gerade ein neues Industriegebiet. Die Flugk?rper haben aber nur eine begrenze Lebensdauer - irgendwann fliegen sie immer niedriger und niedriger und stürzen schlie?lich ab.“

Wenn sie bei diesem Prozess mit einer Geschwindigkeit von mehreren Kilometern pro Sekunde in die oberste Atmosph?renschicht eintauchen, werden sie erheblich abgebremst. ?Gerade in den Bereichen, in denen die Schwerewellen brechen, werden die Satelliten so stark durchgeschüttelt wie ein Auto auf einer Piste mit Schlagl?chern“, verdeutlicht Bittner. Das ist einer der Gründe, warum die Bahn der High-Tech-Flugk?rper sich bislang nicht gut vorhersagen l?sst.

Die GIGAWATT-Ergebnisse k?nnten auch hier Fortschritte erm?glichen. Vielleicht wird es auf ihrer Basis irgendwann m?glich sein, Satelliten am Ende ihrer Lebenszeit gezielt so abstürzen zu lassen, dass die Trümmer im Meer landen - und nicht über bewohntem Gebiet niedergehen.

Die Deutsche Forschungsgemeinschaft (DFG) und die Swiss National Science Foundation (SNSF) f?rdern das GIGAWATT-Projekt in den kommenden drei Jahren mit insgesamt 1,2 Millionen Euro.

Wissenschaftlicher Kontakt

Professor
Atmosph?renfernerkundung
E-Mail:

威尼斯赌博游戏_威尼斯赌博app-【官网】ienkontakt

Michael Hallermayer
Stellvertretender Pressesprecher, Stellv. Leitung
Stabsstelle Kommunikation & Marketing
E-Mail:

Suche