Probabilistic Robotics
ab 1. Semester
Inhalte
In the course of this lecture, students will learn how robots can estimate their state (e.g. their pose) in a probabilistic fashion, i.e. in the face of uncertainty.
?
The main focus of this lecture is on the?Bayes Filter?algorithm which enables robots to estimate their new state after executing a control and to incorporate sensor measurements to update their belief. Various flavors of the Bayes Filter such as the?Kalman Filter?and the?Particle Filter?will be discussed in detail .
?
Furthermore, students will get to know different ways to model robot motion and measuerments of various types of sensors.
?
The final chapters of the lecture will be on approaches to?robot localization, i.e. the problem of the robot having to determine its position on a given map of the environment. Also, the localization problem will be discussed for situations when the robot has to generate a map itself by?occupancy grid mapping?or?simultaneous localization and mapping?(SLAM) algorithms.
?
?bungen
Es erscheint w?chentlich ein ?bungsblatt zu den behandelten Vorlesungsinhalten. Jedes ?bungsblatt wird in der Globalübung?der folgenden Woche besprochen. Es gibt keine Abgabe / Korrektur von ?bungsbl?ttern.
?
Turnus
Achtung: In Zukunft wird Probabilistic Robotics nur unregelm??ig?im Sommersemester gelesen.
?
Literatur
- Sebastian Thrun, Wolfram Burgard, Dieter Fox.?Probabilistic Robotics. MIT Press. (http://www.probabilistic-robotics.org/). Mandatory to read chapters 1 - 8
?
?
?
?