Bayesian Networks
ab 1. Semester
Inhalte
Probability theory is a powerful tool for inferring the value of missing variables given a set of other variables. As the number of variables in a system increases, the joint probability distribution over these variables becomes overwhelmingly large. In this lecture we examine the implications of factoring one large joint probability distribution into a set of smaller conditional distributions and study suitable algorithms for inference.
?
The main aspects of this lectrue are:
?
- Probability theorie
- DAGs and Bayesian Networks
- Discrete inference
- Inference with continuous random variables
- Approximate inference with sampling
- Learning Bayesian Networks from data
?
Hinweis: Diese Vorlesung kann nur noch im Master eingebracht werden.
?
?bungen
Es erscheint w?chentlich ein ?bungsblatt zu den behandelten Vorlesungsinhalten. Jedes ?bungsblatt wird in der Globalübung?der folgenden Woche besprochen. Es gibt keine Abgabe / Korrektur von ?bungsbl?ttern.
?
?
Literatur
- Hauptreferenz: Richard E. Neapolitan.?Learning Bayesian Networks. Prentice Hall Series in Artifical Intelligence, 2004.?ISBN 0-13-012534-2
-
Daphne Koller, Nir Friedman.?Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009.?ISBN 978-0262013192
?
?
?