威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

Multimodal AI Analysis of Cardiovascular Health Data

Veranstaltungsdetails
Datum: 03.07.2025, 16:00 Uhr - 17:30 Uhr 
Ort: Geb?ude N, Raum 2045, Universit?tsstra?e 6a, 86159 Augsburg
Veranstalter: Prof. Sebastian Zaunseder
Themenbereiche: Studium, Wissenschaftliche Weiterbildung, Informatik, Gesundheit und 威尼斯赌博游戏_威尼斯赌博app-【官网】izin
Veranstaltungsreihe: 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences
Veranstaltungsart: Vortragsreihe
Vortragende: Dr. Julien Oster
BIOINF ASFDASDF DSFASF ASDF ASDF ? Universit?t Augsburg

In diesem Semester wird die im WiSe 2022/23 erfolgreich gestartete Vortragsreihe 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences fortgesetzt. Renommierte Wissenschaftlerinnen und Wissenschaftler unterschiedlicher Fachdisziplinen und Forschungsstandorte geben jeden Donnerstag ab 16:00 Uhr Einblicke in aktuelle Fragestellungen und Anwendungsgebiete des breiten Forschungsfeldes 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences.


This presentation explores the? potential of artificial intelligence in analyzing multimodal health data, with specific emphasis on electrophysiological signals and medical imaging. The work addresses critical challenges in developing robust, generalizable AI systems for healthcare applications through three interconnected research directions.

The first part examines deep learning approaches for electrocardiogram (ECG) analysis, addressing fundamental limitations in current methodologies. We focus on the critical issues of model generalizability across diverse patient populations and clinical settings, uncertainty quantification in diagnostic predictions, and local calibration techniques to ensure reliable performance in real-world deployment scenarios.

The second section presents advances in magnetic resonance imaging (MRI) reconstruction and super-resolution techniques. We introduce novel approaches leveraging implicit neural representations within unbiased and self-supervised learning frameworks, eliminating the need for extensive paired training data while maintaining high-quality image reconstruction performance.

The presentation concludes with a forward-looking perspective on multimodal fusion, exploring how joint learning of ECG signals and cardiac medical images can be integrated to develop comprehensive digital twins of the human heart. This integrated approach promises to revolutionize personalized cardiac care by providing unprecedented insights into individual cardiac function and pathology.

Weitere Veranstaltungen der Veranstaltungsreihe "威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences"

Weitere Veranstaltungen: Institut für Informatik

  • Juni 2025 / Juli 2025
  • Juli 2025
  • Juli 2025 / August 2025
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
  • August 2025
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
  • August 2025 / September 2025
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
  • September 2025
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
  • September 2025 / Oktober 2025
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
  • Oktober 2025
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
  • Oktober 2025 / November 2025
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
  • November 2025
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
  • November 2025
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
  • Dezember 2025
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
  • Dezember 2025
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
  • Dezember 2025 / Januar 2026
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
  • Januar 2026
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Januar 2026 / Februar 2026
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
  • Februar 2026
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Februar 2026 / M?rz 2026
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
  • M?rz 2026
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • M?rz 2026 / April 2026
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
  • April 2026
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
  • April 2026 / Mai 2026
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
  • Mai 2026
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
  • Mai 2026
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
  • Juni 2026
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
  • Juni 2026
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

Suche