威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

New lab member: Ioana Lupu

Ioana Lupu has joined our group on 1st June 2024 as the new team assistant. After obtaining a BA in Romanian and English literature, she soon recognized that her skills as a highly organized and detail-oriented individual would be much better suited in the field of administration. Her past work experience helped her develop a solid foundation in administration, equipping her with a comprehensive understanding of office management. Among other things, she is responsible for the smooth operation of our office financial matters, personnel management, and general administration in our group.

Welcome to HPSC Lab, Ioana ?! We are looking forward to working with you!

? Ioana Lupu

Together with Erik Faulhaber, Sven Berger, Christian Wei?enfels und Gregor Gassner,?we have submitted our paper "Robust and efficient pre-processing techniques for particle-based methods including dynamic boundary generation".

?

arXiv:2506.21206 reproduce me!

?

?

Abstract

Obtaining high-quality particle distributions for stable and accurate particle-based simulations poses significant challenges, especially for complex geometries. We introduce a preprocessing technique for 2D and 3D geometries, optimized for smoothed particle hydrodynamics (SPH) and other particle-based methods. Our pipeline begins with the generation of a resolution-adaptive point cloud near the geometry's surface employing a face-based neighborhood search. This point cloud forms the basis for a signed distance field, enabling efficient, localized computations near surface regions. To create an initial particle configuration, we apply a hierarchical winding number method for fast and accurate inside-outside segmentation. Particle positions are then relaxed using an SPH-inspired scheme, which also serves to pack boundary particles. This ensures full kernel support and promotes isotropic distributions while preserving the geometry interface. By leveraging the meshless nature of particle-based methods, our approach does not require connectivity information and is thus straightforward to integrate into existing particle-based frameworks. It is robust to imperfect input geometries and memory-efficient without compromising performance. Moreover, our experiments demonstrate that with increasingly higher resolution, the resulting particle distribution converges to the exact geometry.

Search