威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

Snapshot: Trixi.jl HPC performance tested for up to 61,440 MPI ranks

HPC numerical codes have been largely developed using Fortran or C due to their speed. More accessible languages, like Matlab or Python have found little use for such codes due to their poorer performance. Julia offers both, speed and accessibility for serial calculations and on small clusters. But how a Julia/MPI code scales on large HPC facilities has not been tested yet.

?




Using the Julia code Trixi.jl we test if Julia scales well on large HPC clusters. Trixi.jl uses the MPI library for parallelization and is well suited for this test. Using resources from the Jülich Supercomputing Centre we run simulations on up to 61,440 MPI ranks on 480 compute nodes for a Taylor-Green vortex

problem in three dimensions. We compare the results with the Fortran code FLUXO and see that Trixi.jl scales well for all used MPI ranks and outperforms FLUXO.

?

Degrees of freedom updates per second in dependence of number of MPI ranks for Trixi.jl and FLUXO. CC BY-NC-ND

Together with Erik Faulhaber, Sven Berger, Christian Wei?enfels und Gregor Gassner,?we have submitted our paper "Robust and efficient pre-processing techniques for particle-based methods including dynamic boundary generation".

?

arXiv:2506.21206 reproduce me!

?

?

Abstract

Obtaining high-quality particle distributions for stable and accurate particle-based simulations poses significant challenges, especially for complex geometries. We introduce a preprocessing technique for 2D and 3D geometries, optimized for smoothed particle hydrodynamics (SPH) and other particle-based methods. Our pipeline begins with the generation of a resolution-adaptive point cloud near the geometry's surface employing a face-based neighborhood search. This point cloud forms the basis for a signed distance field, enabling efficient, localized computations near surface regions. To create an initial particle configuration, we apply a hierarchical winding number method for fast and accurate inside-outside segmentation. Particle positions are then relaxed using an SPH-inspired scheme, which also serves to pack boundary particles. This ensures full kernel support and promotes isotropic distributions while preserving the geometry interface. By leveraging the meshless nature of particle-based methods, our approach does not require connectivity information and is thus straightforward to integrate into existing particle-based frameworks. It is robust to imperfect input geometries and memory-efficient without compromising performance. Moreover, our experiments demonstrate that with increasingly higher resolution, the resulting particle distribution converges to the exact geometry.

Search