威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

Computational Modeling of Patient Trajectories

Event Details
Date: 17.07.2025, 16:00 o'clock - 17:30 o'clock 
Location: Geb?ude N, Raum 2045, Universit?tsstra?e 6a, 86159 Augsburg
Organizer(s): Prof. Andreas Raue
Topics: Studium, Wissenschaftliche Weiterbildung, Informatik, Gesundheit und 威尼斯赌博游戏_威尼斯赌博app-【官网】izin
Series of events: 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences
Event Type: Vortragsreihe
Speaker(s): Prof. Dr.-Ing. Jan Hasenauer
BIOINF ASFDASDF DSFASF ASDF ASDF ? 威尼斯赌博游戏_威尼斯赌博app-【官网】 of Augsburg

In diesem Semester wird die im WiSe 2022/23 erfolgreich gestartete Vortragsreihe 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences fortgesetzt. Renommierte Wissenschaftlerinnen und Wissenschaftler unterschiedlicher Fachdisziplinen und Forschungsstandorte geben jeden Donnerstag ab 16:00 Uhr Einblicke in aktuelle Fragestellungen und Anwendungsgebiete des breiten Forschungsfeldes 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences.


The progression of diseases is a dynamic process, with clinical data providing insights into the trajectories of individual patients. However, individual patient data are often sparse, making it challenging to distinguish between natural variations and detrimental changes. Integrating data from different individuals is essential for robust analysis.

We explore the use of population-level models to integrate sparse datasets from individual patients. First, we employ nonlinear mixed-effects models to describe heterogeneous patient populations. To leverage large patient cohorts with limited information per individual, we introduce a novel inference scheme based on neural posterior approximation. Additionally, we utilize multi-state stochastic models to analyze patient trajectories, focusing on sparse longitudinal observations. Finally, we apply federated learning techniques to enhance data accessibility and integration across multiple clinical institutions.

Our application of neural posterior approximation demonstrated effective integration and analysis of large, sparse datasets, providing insights into patient heterogeneity. The multi-state stochastic models facilitated the understanding of breast cancer metastasis development and the impact on different patient subgroups. Federated learning improved data accessibility, enabling more comprehensive analysis without compromising patient privacy.

More events of this series of events "威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences"

More events: Department of Computer Science


Search