威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

DeepRVAT- Integration of Variant Annotations

Event Details
Date: 02.07.2024, 17:30 o'clock - 18:30 o'clock 
Location: N2045, Universit?tsstra?e 2, 86159 Augsburg
Organizer(s): Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics
Topics: Studium, Wissenschaftliche Weiterbildung, Informatik, Gesundheit und 威尼斯赌博游戏_威尼斯赌博app-【官网】izin
Series of events: 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences
Event Type: Vortragsreihe
Speaker(s): Eva Holtkamp, M.Sc.
BIOINF ASFDASDF DSFASF ASDF ASDF ? 威尼斯赌博游戏_威尼斯赌博app-【官网】 of Augsburg

In diesem Sommersemester wird die im WiSe 2022/23 erfolgreich gestartete Vortragsreihe 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences fortgesetzt. Renommierte Wissenschaftlerinnen und Wissenschaftler unterschiedlicher Fachdisziplinen und Forschungsstandorte geben jeden Dienstag ab 17:30 Uhr Einblicke in aktuelle Fragestellungen und Anwendungsgebiete des breiten Forschungsfeldes 威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences.


Rare genetic variants can strongly predispose to disease, yet accounting for rare variants is statistically challenging, and principled strategies for integrating possibly diverse types of variant annotations in a data-driven manner are lacking. Here, we present DeepRVAT (Deep Rare Variant Association Testing), a deep set model that learns gene impairment scores from rare variants, annotations, and phenotypes. DeepRVAT infers the relevance of different annotations and their combination directly from data, eliminating ad hoc modeling choices that characterize existing methods. DeepRVAT estimates a single, trait-agnostic gene impairment score for each gene in each sample, enabling both risk prediction and gene discovery in a unified framework and seamless integration into established association testing frameworks. We apply DeepRVAT on 34 quantitative and 63 binary traits across 469,382 whole-exome-sequenced individuals from the UK Biobank. We integrate state-of-the-art annotations, including AlphaMissense, PrimateAI, AbSplice, DeepRipe, and DeepSEA, and find a substantial increase in gene discoveries and improved replication rates on held-out individuals over previous methods.? We demonstrate the applicability of pre-trained DeepRVAT models to new traits, facilitating the study of disease cohorts with limited training data. Furthermore, we significantly improve the detection of individuals at high genetic risk by combining common variant polygenic risk scores with DeepRVAT.

More events of this series of events "威尼斯赌博游戏_威尼斯赌博app-【官网】ical Information Sciences"

More events: Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics

  • October 2024
  • October 2024 / November 2024
  • November 2024
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
  • November 2024 / December 2024
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
  • December 2024
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • December 2024 / January 2025
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
  • January 2025
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
  • January 2025 / February 2025
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
  • February 2025
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
  • February 2025 / March 2025
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 01
    • 02
  • March 2025
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
  • March 2025
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
  • March 2025 / April 2025
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
  • April 2025
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
  • April 2025 / May 2025
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
  • May 2025
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • May 2025 / June 2025
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
  • June 2025
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • June 2025 / July 2025
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
  • July 2025
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • July 2025 / August 2025
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
  • August 2025
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
  • August 2025
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
  • September 2025
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
  • September 2025
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
  • September 2025 / October 2025
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12

Search